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I. Introduction 

In a recent paper, [1] Frame's method [2] has been applied to the evaluation of 
characteristic polynomials of chemical graphs. In particular the characteristic 
polynomials of the Petersen graph and of a graph for an isomerisation of the 
tetragonal pyramidal complexes have been derived in this way. It has been argued 
in this paper that these characteristic polynomials cannot be easily obtained by 
other methods. 

However, it is well known that chemical graphs describing permutational modes 
of rearrangements are invar.iant with respect to groups of very high order [3-6]. 
These symmetry properties have been used previously to obtain the characteris- 
tic polynomials of various chemical graphs of such modes or of their adjacency 
matrices [3, 4, 7, 8]. Such a symmetry factoring has been widely used for instance 
in quantum mechanics [9] and in normal mode analysis [10]. More recently, 
significant results in this domain have been obtained by various authors (see for 
instance Refs. [11, 12, 13, 14] and work cited therein). In the present note, we 
first recall some of these results and we discuss their relation to Balasubramanian's 
paper [ 1]. It appears in particular that the characteristic polynomial of the Petersen 
graph had already been obtained in this previous work [8]. We conclude by 
comparing the advantages of Frame's method to those of  the procedure based 
on the symmetry properties. 
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2. Trigonal bipyramids 

There are five non trivial modes of rearrangements. Their connectivity ~ i.e. the 
degree of  the graph, the number of vertices v of  each disconnected part are 
recalled in Table 1. The characteristic polynomials of each disconnected part are 
also given (for definitions, enumeration of  modes of  rearrangements, M(yi) 
symbols and the corresponding graphs, see Ref. [15] and the original papers cited 
therein). 

3. Octahedra 

The number of  non trivial modes of rearrangements is four. The corresponding 
graphs have been discussed extensively in a previous work [16]. The M~ symbols 
are those of Ref. [4]. The results are shown in Table 2. 

Table 1. Characteristic polynomials for modes of isomerisation of the trigonal bipyramid 

Modes 6 v Characteristic polynomial [7, 8] 

M(y 1) 3 20 

M(y 2) 6 10 

M(y3) 6 20 

M(y4) 3 10 

M(ys) 1 2 

(A+3)(A -3)(A+2)4(A -2)4(A+l)5(A -1) s 

(A -6)(A -1)4(a +2) s 

(A+6)(A -6)(A+l)a(A -1)4(A+2)5(A -2) s 

(x -3)(a +2)4(x - 1) s 

(X+l)(X -1) 

Table 2. Characteristic polynomials for modes of isomerisation of the octahedron 

Modes 6 v Characteristic polynomial [4] 

M(yz)(M2) 1 2 

M(y3)(M1) 12 30 

M(yn)(M3) 8 30 

M(ys)(M4) 8 30 

(a+l)(X -1) 

(A - 12)(A +6)s(A --2)9A 15 

(A -8)(A +4)s(A +2)9(A - 2 )  15 

(a -8) (A -2)s(A - 4 ) s ( a + 2 )  19 

Table 3. Characteristic polynomials for modes of isomerisation of the tetragonal pyramid 

Modes t5 v Characteristic polynomial [3] 

M(y2)(MO 1 2 (A - 1)(A + 1) 

M(y3)(M2) 4 30 (A -4)(A + 1)4(A - 2 ) n ( A  +2)SAS(A +3) 4 

M(y4)(M6) 4 30 (A -4)(A + 1)4(A - 2)s(A +2)nAs(A - 3 )  4 

M(ys)(M4) 8 30 (A -8) (A +2)9(A -2)15(A +4) s 

M(y6)(Ms) 8 30 (A - 8 ) ( 1  +2)19(A - 2)5(A - 4 )  s 

M(y7)(M3) 4 6 (A -4)(A +2)2A 3 
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4. Tetragonal pyramids 

In this case there are six non trivial modes of rearrangements. The results are 
recalled in Table 3. The graphs have been obtained previously [17]. The M~ 
symbols are those of Ref. [3]. 

5. Discussion 

In each of the above cases, the characteristic polynomial appears in a factorised 
form since it has been obtained by diagonalising the matrix for the corresponding 
mode of rearrangement. 

In the case of trigonal bipyramids, the cyclic group of order ten has been used 
to diagonalise the matrix of M(yl) [7]. The eigenvalues of the other modes of 
rearrangements have been obtained by using the relations between the mode 
operators [8]. Hence, Table 1, obtained previously [7, 8], shows the characteristic 
polynomials for the graphs corresponding to any mode of rearrangement of the 
trigonal bipyramidal skeleton, including the Petersen graph which corresponds 
to mode M(y4) [15]. 

Table 2 shows similar results for the octahedral skeleton. It has been obtained 
[4] by using the fact that the adjacency matrices of these graphs are invariant 
with respect to the full permutation-inversion group S6| J). 

Finally, we have also recalled the results obtained [3] for tetragonal pyramids in 
Table 3. Here again the invariance with respect to $5| (E, J) has been exploited. 
The graph of Fig. 3 in Ref. [1] does not correspond to any of the graphs for the 
isomerization modes listed in Table 3. Indeed the 15 vertices of the former 
correspond each to an enantiomeric pair (a, ~) whereas the 30 vertices of the 
latter correspond to an isomer a or ti. The former graph may be constructed by 
drawing an edge between the vertices (a, a) and (b, b) each time the graph 
corresponding to M(y3) in Table 3 has an edge from a or a to b or ~1 [17]. By 
using the fact thht the resulting graph (see Fig. 3 of Ref. [1]) is invariant with 
respect to $5 [6] it can be shown that its characteristic polynomial is 

(h -4)(h  + 1)4(A - 2)5(A +2)',  

which is equivalent to Eq. (17) of Ref. [1]. Note that the eigenvalues of this graph 
are found among those of M(y3) and M(y4) [see Table 3]. 

To conclude, we think that characteristic polynomials of chemical graphs for 
modes of rearrangements are easy to obtain by using the symmetry properties 
[3-8] of these graphs. This method has been successfully applied to the cases of 
trigonal bipyramids, octahedra and tetragonal pyramids. Among the results 
obtained in this way, the factorised form of the characteristic polynomial of the 
Petersen graph has been derived previously [8, 19]. Concerning tetragonal 
pyramids, these previous results include the characteristic polynomials of graphs 

t One could obtain the same result by starting from the graph corresponding to M(y4) instead of M(y3) 
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with 30 vertices related to the graph for te t ragonal  pyramids  discussed recently 
[1]. This me thod  also has the advantage  to yield the e igenfunct ions  of the 
ad jacency  matrices of the discussed graphs. 

Of  course, for less symmetr ic  graphs, such as the 36-vertices square lattice or the 
24-vertices hexagonal  lattice [1], the use of the symmetry  propert ies  do not  lead 
to direct d iagonal iza t ion .  Hence,  Frame 's  method  and  the computer-ass is ted 
algori thm developed recent ly [1, 18] are super ior  in this case. 
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